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Abstract
Design-by-contract is a software engineering practice where pro-
grammers annotate program elements with contract specifications
that make expectations towards the user and supplier of the pro-
gram element explicit. This practice has been applied in various
contexts such as higher-order programming languages. However,
support for contracts in distributed actor programs is limited. Un-
fortunately, contract specifications need to be checked while exe-
cuting the program which introduces a substantial overhead. To
counter this, soft verification techniques have been proposed to
verify (parts of) contract specifications, but have only been applied
in the context of sequential programs. The goal of our research
is therefore twofold: designing contract languages for distributed
actor programs and developing techniques for their soft verification.
In this context, we present a work plan and method, and show our
preliminary results.

CCS Concepts
• Software and its engineering → Domain specific languages;
Specification languages; Automated static analysis; Software
verification.

Keywords
design-by-contract, actors, distributed programming languages,
static program analysis
ACM Reference Format:
BramVandenbogaerde. 2024. Soft Verification for Actor Contract Systems. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3650212.3685551

1 Introduction
Design-by-contract [9] is a software engineering practice in which
program elements (e.g., classes, functions, methods, . . . ) are an-
notated with contract specification. Usually, these specifications
express pre-conditions, post-conditions and invariants on the pro-
gram element itself. For example, a contract on a function could
specify that it may only be called if its argument is a positive number.
Higher-order contracts enable specifications on higher-order lan-
guages. Findler et al. [5] propose a contract system for higher-order
functional languages. Such a system allows contract specifications
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on functions that return or accept functions as arguments. Blame
assignment is a central concept in these contract systems: upon a
contract violation, the application part responsible for the violation
should be identified.

In the context of distributed programs, some contract systems
have been proposed too [11, 16] but lack expressive power. For ex-
ample, current contract system cannot express dynamic properties
about message receivers, neither can it express dynamic constraints
on communication effects over multiple message chains.

Unfortunately, contract systems can introduce significant over-
head during a programs run time. This is because contract validity
needs to be checked every time a function is called, a class field
is updated, a message is sent to an actor. . . A common solution to
this problem is to disable run-time contract checking altogether.
However, this approach can result in unsafe code, especially in
gradually typed systems were some redundant type safety checks
are removed for efficiency. Nguyen et al. [10] instead propose soft
verification (SCV ) in the form of a static analysis that checks as
many of these contracts as possible before running the program,
leaving those that cannot be verified as residual contract checks in
the program.

Unfortunately, their approach is conceived as a whole-program
analysis which makes their analysis more difficult to scale. In the
context of actor programs, such an approach is infeasible, as their
state space is substantially larger due to the non-determinism in-
herent in actor turn interleavings. Furthermore, contracts for ac-
tor systems introduce a new temporal or behavioral type of con-
tract [4, 6, 11]. These contracts express constraints on the behavior
of an actor in the system, for instance by constraining what mes-
sages an actor can send and in what order. Such contract types are
currently not supported by the verification system proposed by
Nguyen et al. The overall objective of our research is threefold:

• Rendering SCV compositional. A common approach to
speed up static analyses is to render them modular com-
positional. Such an analysis analyses smaller parts of the
application first and then combines these results to compute
the analysis result of the entire program. Its main instru-
ment are summaries which are abstract descriptions of the
behavior of the analysed part. These summaries speed up the
analysis because they can be reused across different paths
in the program. We propose to render SCV compositional
by summarizing each component of the program with con-
straints leading to potential contract violations.

• Designing and implementing an actor contract lan-
guage. We propose a novel contract system in the style
of Findler et al. Its main contributions are expressing con-
straints on the communication effects of an actor’s message
handler, while allowing for more flexibility compared to ses-
sion types. In tandem, we develop a novel blame theory for
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this contract language for which we formulate and proof a
blame correctness theorem.

• Transposing SCV into the actor contract setting. We
will transpose soft contract verification into the actor setting.
This requires designing an analysis that predicts the behavior
of the program in order to verify its temporal properties.

The remainder of this Doctoral Symposium submission is struc-
tured as follows. First, we introduce our approach and how we
plan to validate and evaluate its contributions. Then, we present
our preliminary results for the compositional verifier and contract
language. Finally, we conclude with an overview of future research
direction and a conclusion.

2 Method
In this section we discuss how we aim to achieve our goals and
how we evaluate them.

2.1 Compositional Soft Contract Verification
Compositionality has been investigated for a wide variety of analy-
ses [1, 13]. A compositional analysis splits the program intomultiple
smaller parts (e.g., functions) and analyses them separately. Its goal
is to speed up the analysis by enabling re-use of analysis’ results.
To obtain the analysis result of the whole program, a compositional
analysis needs a view of the information flow through the program.
In a functional programming language, information flows through
function calls, from caller to callee. Thus, the analysis proceeds
with the callees first and then propagates the analysis results to the
callers.

The analysis results are called summaries as they summarize the
behavior of the program part. The challenge lies in constructing a
precise, but reusable summary. It should be sufficiently precise in
order to have precise overall analysis results, but not too precise to
preclude reusing results in a similar but non-identical context.

Existing soft-contract verifiers [10] support analysing function
contracts in higher-order programming languages. In higher-order
languages, control flow is also influenced by the data flow, since
call targets flow as values through the program, making call graph
construction more expensive.

We developed a static analysis for compositional soft verification
of Racket contracts [15]. This analysis operates in two phases. The
first phase analyses the program in a whole-program fashion for
constructing the call graph, but does not perform soft contract
verification. The second phase analyses the program for verifying
its contracts in a compositional manner. We evaluated our approach
on the following aspects:

• Empirical evaluation. The main purpose of rendering soft
contract verification compositional is to improve the run-
ning time of its analysis. Therefore, our empirical evaluation
consist of benchmarking our prototype against a large set
of programs containing various types of contracts. Further-
more, to validate the correctness of our implementation, we
compare it against existing work and check whether its re-
sults are the same or more precise.

• Formal validation.We also validated our approach against
two formal criteria: soundness and termination. The sound-
ness criterion requires that our analysis marks contracts as

safe only when they can never be violated. The termination
criteria requires that our analysis terminates on any program
input, even if that program input does not terminate in a
concrete run.

For the former aspect, we constructed a suite of benchmark pro-
grams based on existing work on soft contract verification. More-
over, we also use this benchmark suite for soundness testing by
manually marking the program (and its parts) as safe or unsafe with
respect to its contracts, and checking whether the analysis agrees
with these annotations. We also measured the degree of summary
reuse in order to explain potential performance improvements.

2.2 Contract Language for Distributed Actor
programs

Next, we proceed with investigating contract languages for dis-
tributed systems. We identify four locations in which a contract
system could intervene. (1) tag , (2) payload, and (3) receiver of mes-
sages and (4) communication effects of message handlers. Moreover,
a contract language for actor systems should have precise blame
assignment. The problem is that actor systems and the microser-
vice architectures often put “internal actors” or services behind a
publicly exposed service. For example, a service might be exposed
through a load balancer which promises that replies will not be sent
through the load balancer but instead directly to the client. Correct
blame assignment should assign blame to the load balancer and not
to the client when the client fails to do so. Thus, contract systems
where blame labels align with actor boundaries is not sufficient and
a more precise blame assignment method is needed.

Moreover, constraining communication effects requires changes
to existing blame assignment theory, as current contract systems
do not take the behavior of the constrained program elements into
account other than their input and output effects. Thus, we validate
our contract system on the following aspects:

• Expressive power. The contract system should be suffi-
ciently expressive to express constraints on real-world pro-
grams and patterns emerging from these programs.

• Formal validation. Finally, we also validate our approach
formally by formulating and proving theoretical properties
about the designed systems. To this end we focus on blame
correctness based on a property formulated by Dimoulas et
al. [2, 3]. Their correctness property correlates blame as-
signment with provenance of values through the program.
If both independent sources of information align then the
blame is correct. Put differently, a party is to blame when the
violating value originated from that party. To validate our
approach we formulate a similar blame correctness property
for actor contracts and provide a corresponding proof.

2.3 Verification of Distributed Actor Contracts
We aim to bring soft contract verification to the distributed actor
setting. Existing soft contract verification techniques for sequential
programs rely on abstract symbolic execution. In this setting, an
abstract interpreter is adapted to work with both abstract values
and symbolic values. The analysis then computes a set of reachable
paths and associates symbolic path constraints with them. These
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path constraints are subsequently used to eliminate program paths
that have unsatisfiable path constraints.

Thus, to transpose existing soft contract verification techniques
novel symbolic representations are needed for representing actor-
specific values. For example, our contracts on the receiver of mes-
sages need a symbolic representation of an actor reference and its
identity. Contract systems for actor languages usually introduce a
behavioural type of contracts. This type of contract usually puts
constraints on the communication effects of an actor. Existing soft
verification techniques do not take these communication contracts
into account and cannot reason about them.

A final concern is scalability. We already rendered the analysis
compositional for verifying contracts in sequential programs, but
additional steps are needed to render the analysis of communication
contracts compositional.

To evaluate our approach we take similar steps as our first re-
search goal: empirical evaluation and formal validation. As a set of
benchmark programs we consider the following sources:

• Reactive design patterns [8]. These patterns describe a
set of recurring strategies for implementing certain aspects
of a distributed system. Thus, they are an ideal candidate to
test our analysis on real-world use cases. For each pattern,
we derive a software contract in our contract language. Then,
we annotate programs implementing the patterns with these
contracts and verify their validity.

• Savina [7] benchmark suite. The Savina benchmark suite
contains a set of actor programs which are frequently used
for testing the performance and correctness of actor system
implementations. We annotate the programs in this bench-
mark suite with contracts that encode the desired properties
of the program. To test our analysis, we then systematically
inject contract violations in these program in order to test
whether our verifier detects them correctly.

3 Preliminary Results
In this section we discuss the preliminary results for each goal of
our research. We do so by formulating a set of research questions
and answering them with our preliminary results.

3.1 Compositional Analysis
For our first research goal we answer the following research ques-
tions:

• RQ1: does the proposed compositional analysis im-
prove the performance of the analysis?We measure this
using the running time of the analysis. To enable fair com-
parisons, we reimplemented the verification techniques from
existing work, which were written in Racket, into our own
analysis framework, which is written in Scala.

• RQ2: does the proposed compositional analysis im-
prove the precision of the analysis results? Again, this
is measured using our own reimplementation of existing
work. Here, we compare the number of contracts marked as
safe by both variants of the analysis. This approach is sound
because we only consider programs that contain no contract
violations for our evaluation.

• RQ3: to what degree are summaries reused? To measure
the degree of summary reuse, we measured the number of
function calls to the same function. We also investigated the
relation between analysis speed and the number of compo-
nents (a unit of work in the analysis, usually a function call)
in the analysis.

RQ1. Our results [15] indicate that the compositional analysis
improves the performance of the soft contract verifier substantially
(up to 3 times faster). Measuring the two phases of our analysis
separately, we notice that the first phase (call graph construction)
takes the majority of the analysis’ time. This indicates that our
second phase (summary-based soft verifier) is efficient, but that the
call-graph construction efficiency could be improved.

RQ2. Our results also show that the precision of the analysis
is improved. Individual examples show that this could be because
the analysis propagates conditions under which contract violations
could occur as opposed to entire program paths.

RQ3. Finally we investigated how summaries are propagated
through the analysis. To this end, we measured the in-degree of
each function in the call graph. We found that, on our set of bench-
mark programs, the in-degree was on average between 1 and 2,
meaning that most functions have only one or two call sites. Thus,
the opportunity of summary reuse at different call-sites seems
rather low. Nonetheless, summaries from the same call-sites but
at different program paths can be reused. This causes the analysis
to become faster since the number of components can be reduced
drastically, resulting in less work for the fixpoint algorithm and a
faster convergence rate.

3.2 Contract System for Actor Programs
To achieve our second research goal we designed and implemented
a contract system for actor languages by formulating contract types
for the four identified locations (cf. supra). We answered [14] the
following research questions which directly relate to our method:

RQ1: Can our contract language express contracts for real-world
applications? Instead of focussing on real-world implementations
appearing in public repositories, we decided to focus on common
patterns emerging from them. Kuhn et al. [8] propose a catalog
of so-called reactive design patterns which are patterns that are
frequently used for developing distributed applications. We have
shown that our contract language can be used to verify that a set
of actors follows these patterns correctly by implementing a set of
contracts for them. To show the practical feasibility of our approach
we implemented our contract language on top of an actor system
for Racket. This language was chosen since it contains a powerful
contract system for sequential programs, but not for distributed or
concurrent ones.

RQ2: Is our contract system formally correct? To validate the for-
mal correctness of our approach we focus on blame correctness.
Blame correctness was first formulated by Dimoulas et al. [2] to
compare different types of blame assignment semantics in sequen-
tial programs. We used this property as a foundation to formulate
our own blame correctness theorem and subsequently described its
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proof. The major difference is the addition of contracts on commu-
nication effects which require additional rules for blame assignment
and their treatment in the blame correctness theorem.

RQ3: What type of constraints can our contract system express that
others cannot? We theorize that our contract system can express
strictly more types of constraints than existing work. To show this,
we aim to simulate existing work such as multiparty session types
in our contract language. Our hypothesis is that we can perform
this simulation mechanically by adding contract boundaries to
each actor within a session. As previously discussed, our contract
boundaries are more flexible to account for differences between
public-facing actors and internal actors.

3.3 Soft Verification for Actor Contracts
Below we formulate three research questions for our third research
goal. Note that we have not answered these research questions
entirely as of yet, but provide some preliminary insights already.

RQ1: What novel symbolic representations are needed for verifying
contracts in the actor setting? Actors and their contracts introduce
a set of new values compared to sequential programs. A value of
interest for contract checking is the receiver of a message. To check
them, actor references need to be symbolically represented and im-
portantly, their cardinality needs to be represented. We expect that
similar techniques as mailbox abstractions and abstract counting
are applicable in this context, but further research is needed.

RQ2: How does reducing the symbolic path constraints affect the
performance of the analysis? In contrast to sequential programs,
interactions with other actors happen in an asynchronous fashion.
This decouples the control flow of the sender of a message from
the control flow of the receiver actor. Thus, messages are rarely
sent with specific program paths on the receiver in mind, rather
the actor is seen as an independent process that has its own sep-
arate execution paths. This poses a challenge for soft verification
as it relies on constraints on these paths, thus a subset of these
constraints relevant to the message should be extracted from path
path condition at the send-site and attached to the message itself.
We think that this approach provides a more scalable means of
checking the validity of actor contracts.

RQ3: Can trace-based semantics be abstracted to verify communi-
cation contracts? Contracts on communication effects are usually
implemented by keeping track of a message trace. For the purpose
of verification, this message trace needs to be abstracted to account
for all possible program behavior. Existing work [12] already pro-
vides some abstractions for representing sets of messages, their
order and multiplicity. However, verification of communication
contracts requires an underapproximation of the actual commu-
nicaton effects, as it aims to rule out contract violations. Existing
work provides an overapproximation and can express may-send
relations on set of messages. Instead, a must-send relation on the
set of messages is needed.

4 Conclusion
Design-by-contract is a powerful software engineering practice
safeguarding the robustness of programs. This approach has been

explored in a distributed actor setting to some extent, but most
approaches are imprecise with regards to blame assignment. Un-
fortunately, applying design-by-contract in practice results in sub-
stantial run-time overhead. This is because each contract needs to
be checked every time some interaction between two contracted
parties in the program happens. Thus, this PhD research is focussed
on (1) addressing shortcomings in existing contract systems for
distributed actor programs, and (2) designing and implementing
static analyses for verifying these contracts.

To achieve these goals, we developed a contract language, im-
plemented it in Racket with actor support, and proved its blame
correctness. Furthermore, we improved the performance of existing
soft verification techniques for sequential programs by rendering
them compositional. The current goal is to transpose these tech-
niques to an actor contract setting. To this end, we need to formulate
symbolic representations for actor and contract values as well as to
design a novel analysis for checking communication contracts.
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