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Abstract
When performing a static analysis, there is a trade-off between the time it takes to run the analysis and the

quality of the results of the analysis. We propose to run the analysis on an abstract slice to reduce the size of the

program to be analysed without impacting the results of the analysis. We adapt an abstract slicing algorithm to

produce executable abstract slices that can be analysed using abstract interpretation. Next, we implement an

intraprocedural abstract slicer for Scheme programs. We evaluate the implementation using a dataset of 1050

randomly generated Scheme programs. We find that abstract slices are in general smaller than their corresponding

concrete slices and that in turn they are analysed faster. Additionally, we find that there is a significant difference

between the abstract slices for two different abstract domains.
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1. Introduction

Static program analysis is able to verify properties of the program without needing to run the program,

making it useful to detect issues at compile-time. An often used technique for static analysis is abstract

interpretation [1], which abstracts the semantics of a program. Part of this abstraction is the use of an

abstract domain that abstracts the concrete values into the properties that are relevant for the analysis.

Because abstract interpretation is very close to the semantics of the program, this technique lends itself

well to mathematical proofs about the semantics and properties of interest [2]. Unfortunately, one of

the main disadvantages of program analysis is that there is a trade-off between the speed of the analysis

and the quality of its results. Developers do not want to wait very long for results of the analysis when

they use the analysis as part of their workflow, but they also do not want to have an analysis that

returns many wrong results as it impacts the usefulness of the analysis [3].

A program slice is a reduced version of a program that contains only expressions that influence

a set of variables at a certain program point. The combination of these variables and the program

point is called the slicing criterion. Program slicing has several use cases. It was originally introduced

by Weiser [4] as a way for developers to intuitively inspect their code during debugging. Other uses

include program comprehension or the automatic generation of tests. Program slicing can also be used

to improve the efficiency of a static analysis [5]. For most of these use cases, it is beneficial that the

computed slice is minimal, meaning that it contains only the expressions that influence the slicing

criterion.

Abstract program slicing is a variant of program slicing where only expressions that influence a

specific property of the variables in the slicing criterion remain in the slice [6]. These properties are

expressed using the abstract domains used by an abstract interpreter, so that an abstract slice removes

all expressions that have no influence on the abstract values of the variables in the slicing criterion. For

example, when debugging, the developer might only be interested in the statements that modify the

nullity of a variable because the variable was null at a point where it should not be null.
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Abstract program slicing in general produces smaller slices than concrete program slices, as it is

possible that an expression that influences the value of the variables in the slicing criterion does not

influence the relevant properties. Because of this, abstract program slicing is potentially a more effective

way to improve the efficiency of a static analysis compared to a concrete program slice. As an abstract

slicer uses the abstract domains of an abstract interpreter, the resulting abstract slices are specific to

this abstract interpretation.

In this paper, we make the following contributions:

• We adapt and implement the abstract slicing framework presented by Mastroeni and Zanardini [6]

to create an intraprocedural abstract slicer for Scheme programs

• We adapt the abstract slicing algorithm to produce executable abstract slices, with the goal of

being able to run an abstract interpreter on the executable abstract slices to obtain a speed up of

the static analysis when compared to running the abstract interpreter on the original program or

a concrete slice

The rest of the paper is organised as follows. We first briefly introduce abstract interpretation and

abstract program slicing as defined by Mastroeni and Zanardini [6] in Section 2. In Section 3, we go

over the modifications made to the abstract slicing algorithm to be able to slice recursive programming

languages such as Scheme. In Section 4, we discuss why an abstract slice should be executable to be

analysed using abstract interpretation and we adapt the abstract slicer so that it produces executable

slices. In Section 5, we run benchmarks on abstract slices of randomly generated Scheme programs to

measure the size of the slices when compared to concrete slices, as well as the time it takes to analyse

them. In Section 6, we discuss the limitations of our work and possible future work. Finally, Section 7

concludes our work.

2. Background

In this section, we briefly introduce abstract interpretation, program slicing, and the different kinds of

program slicing, particularly abstract program slicing.

2.1. Abstract Interpretation

Abstract interpretation is a static analysis technique that over-approximates the semantics of the pro-

gram [1, 2]. Abstract interpretation is based on the definition of an abstract semantics as a generalisation

of the concrete semantics of a program, where operations are defined over an abstract domain. These

semantics describe how abstract states are transformed as the program is executed, analogous to how

concrete states change during the actual program execution. The idea is that we only keep the infor-

mation that is strictly necessary for our analysis, even if we need to approximate it in order to make

it decidable. For example, if we want to know the sign of the variables at the end of the program, it

is sufficient to work in an abstract sign domain where the only information kept is the sign of the

variables. We can then run the program with an abstract interpreter, which makes use of these abstract

values and abstract operations to approximate the concrete values that would be outputted by a concrete

interpreter [7].

2.2. Program Slicing

Program slicing is a technique that was introduced by Weiser [4]. In his original definition, slicing is

defined as “starting from a subset of a program’s behaviour, slicing reduces that program to a minimal

form which still produces that behaviour". Over the years, this original definition has seen several

modifications, resulting in the creation of multiple kinds of slices. Tip [8] shows an overview of these

several kinds of slices and slicing methods. Binkley et al. [9, 10] define a mathematical framework to

formalise the different forms of slicing in order to compare them, based on the specifics of the slicing

criterion.



Program slices are used in several ways. Weiser initially proposed slices as the intuitive way for

experienced programmers to reason over their programs, for example during debugging [11]. However,

there are also other use cases where slicing can be used. For example, there have been suggested

applications in program comprehension, software maintenance, or testing [12]. In general, we usually

want slices to be as small as possible while keeping all statements that are relevant to the slicing

criterion. The challenge is then to know exactly which statements are safe to be removed without

modifying the slicing criterion, while keeping as few statements as possible.

Mastroeni and Zanardini propose a new form of slicing that they call abstract slicing [6]. Instead

of slicing based on concrete values, they formalise a technique that allows general slicing based on

properties. They argue that this form of slicing, which could in general remove more statements

than concrete slicing, can help programmers discover where the error lies when one of their variables

does not have a desired property (e.g. a variable is null when it should not be) by only returning the

statements that actually have an effect on that property. On the other hand, a concrete slice will contain

all statements that influence the value of the variable, regardless of if they impact the property of interest.

They formally define this abstract slicing in a framework that makes use of abstract dependencies.

Concrete slicing can be defined within this framework as well: if the abstract slicing is done with

regards to the identity property (where the identity property of a value is the value itself) then the slice

corresponds to a concrete slice. The properties used for the abstract slicing are based on the domains of

an abstract interpreter, such that in an abstract slice in regards to a variable 𝑥 for a specific property 𝜌,

𝑥 has the same abstract value as in the original program in the state resulting from the execution of an

abstract interpreter using the domain 𝜌.

This formal framework is an extension of the formal framework defined by Binkley et al. [9, 10].

They extend the slicing criterion into an abstract slicing criterion by adding the criterion abstraction

𝒜, which defines the abstract domains we are interested in for each variable in 𝒳 . 𝒜 is defined as a

mapping of variables from 𝒳 to abstract domains. In Figure 1, an example of the difference between

concrete and abstract slices is given. In this example, we see the slices for slicing criterion (𝑑, 5), where

the abstract slice is taken for the property 𝜌parity.

1 (define a 1)
2 (define b 2)
3 (define c 3)
4 (define e 4)
5 (define d (- (+ (* 2 c) a

b) a))

1 (define a 1)
2 (define b 2)
3 (define c 3)
4

5 (define d (- (+ (* 2 c) a
b) a))

1

2 (define b 2)
3

4

5 (define d (- (+ (* 2 c) a
b) a))

Figure 1: Left: the original program; middle: a concrete slice; right: an abstract slice

To compute abstract slices, Mastroeni and Zanardini [6] propose an algorithm based on two rule

systems: the pp-system and the g-system. The pp-system is used to infer property preservation. If an

expression preserves a property of a variable, then this means that the expression could be removed

in the abstract slice. The g-system is used to propagate agreements backwards through the program,

where an agreement of a program point defines which properties for which variables are relevant

at that program point. At the end of the program, the relevant properties are those defined in the

slicing criterion. Using the rules of the g-system, we can then decide based on the expression and

the previous agreement what properties are relevant at the previous program point. When a relevant

variable is reassigned, the rules of the g-system make use of a notion of ‘abstract dependencies’ to

decide which properties of the variables used in the assigned expression are relevant to the property in

the agreement. Finally, we can use this information to infer using the pp-system which statements can

be safely removed from the program to create the abstract slice.



3. An Abstract Slicer for Scheme

We start by adapting the abstract slicing algorithm presented by Mastroeni and Zanardini [6] to work

for languages with a recursive structure, such as Scheme. In order to do this, we need to modify the rule

systems for property preservation and agreement propagation as described in the original paper so that

they recursively check subexpressions. These modified rule systems can be found in Appendix A and B

respectively. Additionally, we modified the slicing algorithm so that the algorithm will first recursively

remove subexpressions. To ensure that subexpressions without side-effects but whose value is relevant

for the superexpression are not sliced, we only slice subexpressions that are not in a position where

their value is potentially used.

An example is shown in Figure 2. We see a program and an abstract slice of this program where

the relevant property is the sign of 𝑥 at the end of the program. For every expression in the program,

a postcondition is given that defines the relevant properties at this point in the program in the form

of an ‘agreement’. The first expression on line 2 can be sliced away, as its postcondition is the empty

agreement, meaning that no variables are relevant at this point. However, the definition on line 3

has to remain. For the binding of the let-expression, it gets slightly more complicated as we have a

nested begin-expression. In this begin-expression, we cannot slice away the (set! z y) expression,

but we can slice away the set!-expression after that. Although the sign of 𝑦 is relevant before this

expression, 𝑦 is not used after this expression so the postcondition of the expression no longer contains

𝑦 and the set!-expression can be sliced away. The third expression in the begin-expression is simply

z, which does preserve its postcondition, so we could argue that it could be sliced away. However,

this z is the return value of the begin-expression, which is an expression in the right-hand-side of

an assignment. This means that we cannot slice the expression z. Finally, we take a look at the body

of the let-expression. The only expression in the body is x, which preserves the properties of its

postcondition. Although at first sight it looks like this could be a similar situation to the z expression

of before, as this is the return value of the let-expression, we can actually slice away this expression.

This is because the let-expression is not in the right-hand-side of an assignment or a nested expression

as the operator of a function application, so its return value is unused.

1 ; []
2 (define z 5) ; []
3 (define y -6) ; [y -> sign]
4 (let ; [x -> sign]
5 ((x ; [x -> sign]
6 (begin (set! z y) ; [z -> sign]
7 (set! y 8) ; [z -> sign]
8 z))) ; [x -> sign]
9 x) ; [x -> sign]

1

2

3 (define y -6)
4 (let
5 ((x
6 (begin (set! z y)
7

8 z)))
9 )

Figure 2: Example of a sliced Scheme program

4. Executable Abstract Slicing

In order to run an abstract interpreter, it is important that the abstract slice is at least as executable

as the original program so that it does not introduce new errors. However, an abstract slice is not

necessarily executable.

Figure 3 depicts an example program and its abstract slice for the parity property of the variable

𝑥. We see that even though the original program is able to be executed without errors, the resulting

abstract slice would throw an error because the variables 𝑥 and 𝑦 are undefined. The definitions of these

variables were removed because their values are irrelevant to the properties of interest of the variable x

at the end of the program. The original definition of the variable 𝑥 in line 1 is irrelevant because the



1 (let ((x 1)
2 (y -7)
3 (z 42))
4 (set! x (+ y (* z 2))))

1 (let (
2 (y -7)
3 )
4 (set! x (+ y (* z 2)))))

Figure 3: Original program and its non-executable abstract slice

value is overwritten by the set!-expression in line 4. The variable 𝑧 is used in the set!-expression on

line 4, but its value is not relevant because the expression (* z 2) will always be even, so the abstract

slicer deems it not necessary to keep the definition of 𝑧.

To ensure that we do not introduce extra errors, we need to know when a variable is used in an

expression that remains in the slice. We can then use this information to keep define-expressions that

would otherwise be sliced away only if necessary. However, this removes part of the advantage that an

abstract slicer has over a concrete slicer. A concrete slicer always keeps these definitions, as variables

are a dependency of the expressions they are used in, unrelated to whether or not their value influences

the value of the expression. On the other hand, in an abstract slicer we know when the value of the

variable is not relevant, meaning that we can potentially slice away a lot more expressions; especially if

the definition of the variable was a complicated expression with many subexpressions. If we need to

keep this entire computation when the value is not relevant, then we are knowingly keeping a lot of

unnecessary computations in the abstract slice. For this reason, we can instead replace this computation

by a ‘dummy’ value of the right type, so that we do not introduce type errors. In this way, we can still

take advantage of the more aggressive slicing of an abstract slicer, while ensuring that the abstract

slices remain executable.

4.1. Labelling Irrelevant Expressions

Because we do not want to keep every variable definition, we need to first compute what variables

are used in expressions that are not sliced away. For this, we can make use of a live variables analysis.

However, we need to take into account that not all expressions of the original program are in the slice,

so when we check when a variable is live we need to do this for the expressions that remain in the slice.

On the other hand, we do not want to run the live variables analysis on the slice itself, because the

definitions that were already removed in the abstract slice could change the output of the live variable

analysis. To deal with this problem, we work with an intermediate program representation where the

expressions are annotated with whether or not they are sliced away, so that we can run a live variables

analysis on the unsliced program while still taking the future removals into account. In Figure 4, we see

an example program where the expressions that will be removed by the abstract slicer are labelled.

1 (define z 5) ; irrelevant
2 (define y -6)
3 (let
4 ((x
5 (begin (set! z y)
6 (set! y 8) ; irrelevant
7 z)))
8 x) ; irrelevant

Figure 4: Example program labelled with the irrelevant expressions



4.2. Live Variables Analysis

The next step is to perform a live variables analysis on this intermediate representation. The analysis

returns a mapping of expressions to the variables that are live for that expression. Because we only

consider programs without loops, the live variables analysis is a simple data flow analysis that can be

done in a single iteration, starting at the end of the program with an empty list of live variables. It then

traverses the program from back to front. For most kinds of expressions, the algorithm simply recurses

deeper into the subexpressions. For if-expressions, the variables used in the condition expression are

added to the list of live variables. The most interesting expressions are the assignment expressions, as

these can potentially remove variables from the list of live variables.

Additionally, the live variables analysis has to take into account what expressions will be sliced away,

as the variables used in these expressions are not considered live. If an expression was labelled to be

sliced away and it is not a definition-expression, we do not modify the list of used variables for this

expression. This is because this expression is removed, so any variable used in it is not used in the slice.

However, when we have a define-expression that is labelled to be sliced away but the variable being

defined is in the set of live variables that is being propagated during the analysis, then this means that

the variable is used in later parts of the program and we are not able to slice away its definition. In

this case, we need to update the set of live variables as if the define-expression was not labelled to be

sliced. Figure 5 depicts an example program labelled with the variables that are live in the abstract slice

after each expression.

1 (define z 5) ; {}
2 (define y -6) ; {y}
3 (let ; {}
4 ((x ; {x}
5 (begin (set! z y) ; {z}
6 (set! y 8) ; {z}
7 z))) ; {}
8 x) ; {}

Figure 5: Example program labelled with the live variables after each expression

4.3. Dummy Values

To ensure that we do not necessarily need to keep the entire computation for the definitions of variables

that are only necessary for syntactic purposes, we introduce the concept of ‘dummy values’. These

dummy values are values that replace the right-hand-side of define-expressions or bindings of let-

expressions. We need to make sure that they are of the same type as the original expression, so that

no type errors are introduced. However, we cannot evaluate the expression to find out what kind of

value it returns. The solution is to use the abstract interpreter: this returns an abstract value for the

expression, which we can then convert into a concrete value using the concretisation function of the

abstract domain.

In order to do this, we introduce ‘dummy’ expressions. A dummy expression evaluates to a value

with the same properties as the original value of the expression 𝑒 as decided by the abstract interpreter.

We do this by first running the abstract interpreter and getting the abstract value, and then converting

this to a random concrete value that abstracts into the same abstract value. For example, if we are

in the 𝜌sign domain and the abstract value is neg, then a possible dummy value could be -1. If the

abstract value is ⊤, then we can choose an arbitrary number as the dummy value. The actual value of

the dummy value is not relevant, as the abstract slicer has already established that its value could be

sliced away.

For example, Figure 6 depicts how the introduction of dummy values results in an executable slice.

For both the variables 𝑥 and 𝑦, we know from the labelling of the irrelevant expressions that their value



1 (let (
2 (y -7)
3 )
4 (set! x (+ y (* z 0))))

1 (let ((x (dummy 1))
2 (y -7)
3 (z (dummy 1))
4 (set! x (+ y (* z 0)))))

Figure 6: Example executable slice using dummy values

does not influence the properties of interest. However, during the live variables analysis they are said

to be live at the expression that defines them, therefore we cannot slice away these definitions. Instead,

their value is replaced by a dummy value of the right type.

5. Evaluation

For our evaluation, we formulate the following research questions:

• RQ1: Does our approach using abstract slicing result in smaller slices when compared to concrete

slicing?

• RQ2: What is the impact of the abstract domain on the size of an abstract slice?

• RQ3: Are the abstract slices generated by our abstract slicer analysed faster than concrete slices?

We implemented our approach using Monarch
1
, a Haskell framework for creating modular static

analyses using abstract interpretation. Our implementation of the abstract slicer can be found in
an online source code repository2.

Because our abstract slicer is a prototype that only supports intraprocedural slicing using numeric

domains, it is hard to find enough suitable programs to test. For this reason, we generate a dataset

of random expressions to ensure that we have examples representing variable amounts of set!-

expressions. The more set!-expressions a program contains, the greater the likelihood that the slicing

criterion is modified, meaning that potentially more expressions are relevant to the final abstract value

of the variables in the slicing criterion. We created a set of 1050 programs by generating 50 programs

for every set!-percentage ranging from 0% to 20%. Using this dataset, we ran benchmarks on the size

of the slices, which is discussed in Section 5.1, and on the time it takes to analyse them, discussed in

Section 5.2.

5.1. Slice Size (RQ1 & RQ2)

We plot the sizes of the resulting abstract and concrete slices in a boxplot, depicted in Figure 7. In this

plot, we see the sizes of the slices for both of the different domains, as well as the sizes of the concrete

slices. The sizes are expressed as a percentage of the original program size to normalise them. In this

boxplot, we clearly see that the median size of the concrete slices is larger than the median size of the

abstract slices. This is especially clear when we compare the sizes of the slices for the 𝜌parity domain

with the sizes of the concrete slices, where we see that the concrete slices are approximately 10% larger

than the abstract slices using the 𝜌parity domain. Additionally, we see that the slices for the 𝜌parity
domain are on average approximately 5% smaller than the slices for the 𝜌sign domain. This could be

because there are less operations that modify the parity of a variable, so that there are more expressions

that preserve the parity property and can be sliced away.

To confirm these findings, we do a statistical analysis of the data. We use a one-sided paired Wilcoxon

signed-rank test [13] to compare the slice sizes. We first apply the Wilcoxon test to the sizes of concrete

slices and the sizes of slices for the 𝜌sign domain, so that the null hypothesis is that there is, in general,

no significant difference between the sizes of concrete slices and abstract slices of the 𝜌sign domain.

1

https://github.com/softwarelanguageslab/monarch

2

https://github.com/sarahverbelen/maf-hs



Figure 7: Boxplot showing the size of the slices as a percentage of the original program size

The alternative hypothesis is that the median size of the concrete slices is larger than the median size of

the abstract slices of the 𝜌sign domain. The test yields a W statistic of 4173 and a p-value that is less

than 2.200× 10−16
. Since the p-value is much less than the chosen significance level of 0.05, we reject

the null hypothesis. This indicates that the median size of concrete slices is larger than the median size

of abstract slices using the 𝜌sign domain.

Next, we apply the Wilcoxon test to the sizes of concrete slices and the sizes of slices for the 𝜌parity
domain, so that the null hypothesis is that there is, in general, no significant difference between the

sizes of concrete slices and abstract slices of the 𝜌parity domain. The alternative hypothesis is that the

median size of the concrete slices is larger than the median size of the abstract slices of the 𝜌parity
domain. The test yields a W statistic of 2164.5 and a p-value that is less than 2.200× 10−16

. Since the

p-value is much less than the chosen significance level of 0.05, we can again reject the null hypothesis.

This indicates that the median size of concrete slices is also larger than the median size of abstract slices

using the 𝜌parity domain.

Answer RQ1. The median slice size of the concrete slices is larger than both the median slice

sizes of the abstract slices for the 𝜌parity domain and of the 𝜌sign domain. According to Figure 7,

the concrete slices are approximately 10% larger than the slices using the 𝜌parity domain and

approximately 5% larger than the slices using the 𝜌sign domain.

Finally, we apply a two-sided paired Wilcoxon signed-rank test to discover if there is a significant

difference between the sizes of the slices for the 𝜌parity domain and the 𝜌sign domain. The null hypothesis

is that there is no significant difference between the sizes of the abstract slices for these two domains,

while the alternative hypothesis is that there is a significant difference. The test yields a W statistic of

26798 and a p-value that is less than 2.200× 10−16
. As the p-value is less than 0.025, we can reject the

null hypothesis and conclude that there is a significant difference between the sizes of slices for the two

different domains. This indicates that the domain used for the abstract slicing is relevant.

Answer RQ2. The slices using the 𝜌parity domain and the slices using the 𝜌sign domain have

a significant difference in size. According to Figure 7, the slices using the 𝜌parity domain are

approximately 5% smaller than the slices using the 𝜌sign domain.



5.2. Analysis Time (RQ3)

Figure 8: Boxplot showing the analysis time of the slices as a percentage of the analysis time of the original

program

First, we plot the results of the benchmarks in a boxplot. For every program, we computed the relative

analysis time for concrete and abstract slices by dividing them by the analysis time of the corresponding

original program. This normalises the data by showing it as a percentage of the original analysis time. In

the boxplot in Figure 8, we see that, in general, the abstract slices using the 𝜌parity domain are analysed

approximately 20% faster than the concrete slices. To confirm this, we do a statistical analysis to see

the difference in the time it takes to analyse the concrete slices compared to the abstract slices. For all

following statistical tests, we select a significance level of 0.05.

We use a one-sided paired Wilcoxon signed-rank test [13] to compare the analysis times of the slices,

so that the null hypothesis is that there is no significant difference between the analysis time of abstract

and concrete slices and the alternative hypothesis is that the median of the analysis times of the concrete

slices is higher than the median of the analysis times of the abstract slices. We observe a W statistic

of 482174 and a p-value of 2.200 × 10−16
. As the p-value is extremely low, it is below the chosen

significance level of 0.05 and we reject the null hypothesis. We accept the alternative hypothesis and

can conclude that the median analysis time of the concrete slices is greater than the median analysis

time of the abstract slices for the 𝜌parity domain, confirming the results of the boxplot in Figure 8.

Answer RQ3. In Figure 8, we see that the abstract slices are analysed approximately 20% faster

than the concrete slices. From our statistical analysis, we can confirm that the median analysis time

of the concrete slices is greater than the median analysis time of the abstract slices for the 𝜌parity
domain.

6. Limitations & Future Work

The first limitation of our work is that our abstract slicer is an intraprocedural slicer. In real world

scenarios, programs typically consist of multiple procedures. Future work could focus on extending the

abstract slicer to slice interprocedurally, which would be more applicable for real use cases. Additionally,

an interprocedural abstract slicer has the potential to slice large parts of the program, as procedures



that do not influence the properties of the slicing criterion could be sliced away completely. This would

likely significantly improve the speed of the static analysis that we want to run on the abstract slices.

Another limitation of our work is that our implementation is limited to numerical domains. This

limited the kind of programs that we could use to evaluate our abstract slicer. Future work could

investigate if the improvements that we measured on numerical domains would hold for complex

domains that might be influenced by most operations, or if abstract slicing is only useful for simple

domains where it is clear that many operations do not influence the property.

Finally, if we want to speed up static analysis by first creating an abstract slice for the program,

we should take into account that the slicing itself also takes time. Ideally, the time it takes to slice

combined with the time it takes to analyse the abstract slice should be less than the time it takes to

analyse the original program. Otherwise, the overhead caused by the abstract slicing would negate the

improvement in analysis time. We did not test how long it takes to slice a program using our abstract

slicer, as the implementation is not optimised for efficiency. Future work could focus on creating an

optimised implementation of an abstract slicer to investigate if abstract slicing is a good preprocessing

step to improve the efficiency of static analyses.

7. Conclusion

In this paper, we presented an intraprocedural abstract slicer for Scheme programs by modifying

an existing abstract slicing framework with the goal of using these abstract slices to improve the

efficiency of static analyses by abstract interpretation. For this reason, we adapted the abstract slicer to

produce executable abstract slices that can be analysed by an abstract interpreter. Next, we provided

an implementation of the abstract slicer for Scheme programs in the Monarch framework. We used

the implementation of abstract domains and the abstract interpreter from the framework to make the

abstract slices specific to the static analyses defined in the framework. Finally, we ran benchmarks on a

data set of randomly generated programs with a varied amount of set!-expressions. We found that

in general, the abstract slices are smaller and faster to analyse than the corresponding concrete slices.

Additionally, we discovered that there is a significant difference in the sizes of the slices of the 𝜌sign and

𝜌parity domains.
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A. Property Preservation Rule System for Scheme Programs

pp-skip

𝑃𝑃 𝛽(𝒢, 𝑠)

𝑃𝑃 𝛽(𝒢, 𝑒) ∀𝜎. 𝜎 |= 𝛽 ⇒ 𝒢(𝑥)(𝜎(𝑥)) = 𝒢(𝑥)(J𝑒K𝜌(𝜎))
pp-assign-define

𝑃𝑃 𝛽(𝒢, (define x e))

𝑃𝑃 𝛽(𝒢, 𝑒) ∀𝜎. 𝜎 |= 𝛽 ⇒ 𝒢(𝑥)(𝜎(𝑥)) = 𝒢(𝑥)(J𝑒K𝜌(𝜎))
pp-assign-set

𝑃𝑃 𝛽(𝒢, (set! x e))

𝑃𝑃 𝛽(𝒢, 𝑒1) ... 𝑃𝑃 𝑒𝑛−1(..𝑒1(𝛽))(𝒢, 𝑒𝑛)
pp-concat

𝑃𝑃 𝛽(𝒢, (begin 𝑒1 ... 𝑒𝑛))

𝑃𝑃 𝛽∧𝑏′(𝒢𝑡, 𝑒𝑡) 𝑃𝑃 𝛽∧¬𝑏′(𝒢𝑓 , 𝑒𝑓 )
pp-if

𝑃𝑃 𝛽(𝒢𝑡

⨆︀
𝒢𝑓 , (if 𝑏 𝑒𝑡 𝑒𝑓 ))

𝑃𝑃 𝛽(𝒢, (define 𝑥1 𝑒1)) ... 𝑃𝑃 𝑒𝑛−1(..𝑒1(𝛽))(𝒢, (define 𝑥𝑛 𝑒𝑛)) 𝑃𝑃 𝛽let(𝒢, 𝑒𝑏)
pp-let

𝑃𝑃 𝛽(𝒢, (let ((𝑥1 𝑒1) ... (𝑥𝑛 𝑒𝑛)) 𝑒𝑏))

primitive(op) 𝑃𝑃 𝛽(𝒢, 𝑒1) ... 𝑃𝑃 𝑒𝑛−1(..𝑒1(𝛽))(𝒢, 𝑒𝑛)
pp-app

𝑃𝑃 𝛽(𝒢, (op 𝑒1 ... 𝑒𝑛))

Figure 9: The pp-system for Scheme
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B. Agreement Propagation Rule System for Scheme Programs

𝑃𝑃 𝛽(𝒢, 𝑒)
g-pp

{𝒢}𝛽 𝑒 {𝒢}

{𝒢}𝛽 𝑒1 {𝒢1} ... {𝒢𝑛−1}𝑒𝑛−1(..𝑒1(𝛽)) 𝑒𝑛 {𝒢𝑛}
g-concat

{𝒢}𝛽 (begin 𝑒1 ... 𝑒𝑛) {𝒢𝑛}

∀𝑦. ¬(𝑦 ∼∼∼∼∼▷
𝒢, 𝒢′(𝑥)

at 𝑒)𝛽 ∀𝑦 ̸= 𝑥. 𝒢(𝑦) = 𝒢′(𝑦)
g-assign-define

{𝒢}𝛽 (define 𝑥 𝑒) {𝒢′}

∀𝑦. ¬(𝑦 ∼∼∼∼∼▷
𝒢, 𝒢′(𝑥)

at 𝑒)𝛽 ∀𝑦 ̸= 𝑥. 𝒢(𝑦) = 𝒢′(𝑦)
g-assign-set

{𝒢}𝛽 (set! 𝑥 𝑒) {𝒢′}

{𝒢}𝛽 𝑠𝑡 ◇ 𝑠𝑓 {𝒢′}
g-if1

{𝒢}𝛽 (if 𝑏 𝑒𝑡 𝑒𝑓 ) {𝒢′}

∀𝑦. ¬(𝑦 ∼∼∼∼∼▷
𝒢𝑏, 𝒢𝑏

at 𝑏)𝛽 {𝒢𝑡}𝛽∧𝑏 𝑠𝑡 {𝒢′} {𝒢𝑓}𝛽∧¬𝑏 𝑠𝑓 {𝒢′}
g-if2

{𝒢𝑏 ⊓ 𝒢𝑡 ⊓ 𝒢𝑓}𝛽 (if 𝑏 𝑒𝑡 𝑒𝑓 ) {𝒢′}

{𝒢}𝛽 (define 𝑥1 𝑒1) {𝒢1} ... {𝒢𝑛−1}𝑒𝑛−1(..𝑒1(𝛽))
(define 𝑥𝑛 𝑒𝑛) {𝒢𝑛} {𝒢𝑛}𝑒𝑛(..𝑒1(𝛽)) 𝑒𝑏 {𝒢′}

g-let

{𝒢}𝛽 (let ((𝑥1 𝑒1) ... (𝑥𝑛 𝑒𝑛)) 𝑒𝑏) {𝒢′}

primitive(op) {𝒢}𝛽 𝑒1 {𝒢1} ... {𝒢𝑛−1}𝑒𝑛−1(..𝑒1(𝛽)) 𝑒1 {𝒢′}
g-app

{𝒢}𝛽 (op 𝑒1 ... 𝑒𝑛) {𝒢′}

Figure 10: The g-system for Scheme
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